skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Willis‐Norton, Ellen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The environmental conditions in the ocean have long been considered relatively more stable through time compared to the conditions on land. Advances in sensing technologies, however, are increasingly revealing substantial fluctuations in abiotic factors over ecologically and evolutionarily relevant timescales in the ocean, leading to a growing recognition of the dynamism of the marine environment as well as new questions about how this dynamism may influence species' vulnerability to global environmental change. In some instances, the diurnal or seasonal variability in major environmental change drivers, such as temperature, pH and seawater carbonate chemistry, and dissolved oxygen, can exceed the changes expected with continued anthropogenic global change. While ocean global change biologists have begun to experimentally test how variability in environmental conditions mediates species' responses to changes in the mean, the extensive literature on species' adaptations to temporal variability in their environment and the implications of this variability for their evolutionary responses has not been well integrated into the field. Here, we review the physiological mechanisms underlying species' responses to changes in temperature,pCO2/pH (and other carbonate parameters), and dissolved oxygen, and discuss what is known about behavioral, plastic, and evolutionary strategies for dealing with variable environments. In addition, we discuss how exposure to variability may influence species' responses to changes in the mean conditions and highlight key research needs for ocean global change biology. 
    more » « less
  2. Abstract Fishing communities are increasingly required to adapt to environmentally driven changes in the availability of fish stocks. Here, we examined trends in the distribution and biomass of five commercial target species (dover sole, thornyheads, sablefish, lingcod, and petrale sole) on the US west coast to determine how their availability to fishing ports changed over 40 years. We show that the timing and magnitude of stock declines and recoveries are not experienced uniformly along the coast when they coincide with shifts in species distributions. For example, overall stock availability of sablefish was more stable in southern latitudes where a 40% regional decline in biomass was counterbalanced by a southward shift in distribution of >200 km since 2003. Greater vessel mobility and larger areal extent of fish habitat along the continental shelf buffered northerly ports from latitudinal changes in stock availability. Landings were not consistently related to stock availability, suggesting that social, economic, and regulatory factors likely constrain or facilitate the capacity for fishers to adapt to changes in fish availability. Coupled social–ecological analyses such as the one presented here are important for defining community vulnerability to current and future changes in the availability of important marine species. 
    more » « less